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Abstract-The modified differential approximation (MDA) first proposed by Olfe and recently extended 
by Modest is applied to a three-dimensional absorbing-emitting-scattering medium bounded by non-black 
walls. Numerical techniques are developed to solve for the radiation fields due to wall emission and medium 
emission. The techniques are evaluated in terms of the computer memory requirement. CPU time and 
numerical accuracy. For a model problem, the modified differential approximation is compared against 
the zone method, lhe P, approximation, the P, approximation, S, and S,,. MDA is shown to be superior 
to the P, and P, approximations and to compare favorably with S* solutions for all conditions of optical 

depth. 

1. INTRODUCTION 

THE DIFFERENTIAL approximation, also known as the 
moment method or P, approximation, is a popular 
technique of solving the radiation transport equation 
for absorbing, emitting and scattering media. 
Although it is accurate in optically thick situations, 
it becomes unacceptable in optically thin situations, 
particularly for multi-dimensional media. One way of 
extending the optical thickness range in which the 
differential approximation remains valid is to retain 
higher order terms in the Legendre polynomial expan- 
sion of the radiation intensity. The resulting higher 
order approximations, such as P, and P5, are con- 
siderably more involved but still inaccurate for 
sufficiently small optical thickness. 

In a series of papers, Olfe [l-3] offered an alter- 
native approach to improving the accuracy of the P, 
approximation. The approach, called modified 
differential approximation (MDA), consists of sepa- 
rating the wall emission from the medium emission. 
Recently, Modest [4] demonstrated that Olfe’s MDA 
may be formulated for a general absorbing, emitting 
and anisotropically scattering medium bounded by 
diffusely emitting and reflecting walls. He presented 
MDA solutions of a one-dimensional slab at radiative 
equilibrium and a two-dimensional cold cylinder with 
isotropic scattering. He compared the solutions with 
Olfe’s slab analysis, the ordinary P, solution for a cold 
cylinder and the exact Monte Carlo solution to show 
that MDA yields results of excellent accuracy for all 
optical conditions. 

The purpose of this paper is to apply Modest’s 
formulation of MDA to a three-dimensional absorb- 
ing, emitting and scattering medium bounded by non- 
black walls. The major emphasis is on development of 
numerical techniques for determining radiation fields 

due to wall emission and medium emission, char- 
acterization of techniques with regard to com- 
putational speed and memory requirements, and com- 
parison of three-dimensional MDA solutions to those 
obtained from the zonal method, the higher order 
differential approximation and discrete-ordinate 
methods. 

2. THEORY 

For a three-dimensional absorbing, emitting and 
scattering rectangular enclosure, the radiation trans- 
port equation is 

v.(s^r)+p= (l-w)&+g 
i 

I(r, s’)~$(s^, i’) dR’ 
‘ln 

(1) 

where I is the spectra1 radiation intensity in the beam 
direction i, 1 and w are, respectively, the spectral extinc- 
tion coefficient and scattering albedo, Ib is the Planck 
function, 4 is the scattering phase function and R 
denotes the solid angle. Following Modest [4], we 
decompose the radiation intensity I into two parts: 
one, IS, that may be traced to emission from the enclos- 
ure walls, and the second, I,,,, that may be traced to 
emission from the medium. The two components of 
intensity are governed by the following equations : 

and 

V.[s^l,(r,S)]+pl,(r,s) = 0 (2) 

s I(r,Y)q!@, 2’) da’. (3) 
‘In 

The I, field, given by equation (2), accounts for radi- 
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NOMENCLATURE 

fl I anisotropic scattering coefficient 
A surface area 
F view factor 
,f/s exchange coefficient 
G incident radiation 
I intensity 
J radiosity 
9 heat flux 
.t beam direction 
T temperature. 

Greek symbols 
P extinction coefficient 

E emissivity 
4 scattering phase function 
T optical thickness 

scattering albedo 
E solid angle. 

Subscripts 
b black body 
m medium-originated radiation 
S surface-originated radiation 
W wall. 

ation emitted by the enclosure walls after attenuation 
by medium absorption and scattering and by wall 
reflections. It admits the following solution : 

J,(f) ~~ 
f,(r,s^) = ~ e , T= ‘,Ids’ 

s 
(4) rl 0 

where .I, is the radiosity at the wall from where the 
beam emanates and T is the optical distance between 
that point on the wall (r’) and the point under con- 
sideration (1.). The wall radiosity .I,, is determined in 
the usual manner as the sum of wall emission and 
refleclion 

J,(r’) = c,nlhu(r’) 

+ (I -E,.) 
s 

J,.(r’) 
cos 0 cos 0’ 

em’dA. (5) 
:I xlr-r’[’ 

In equation (5), E, is the spectral wall emissivity, fol- 
lowing Modest [4], whereas I,, with its origin from the 
radiation emitted by the wall, has a highly irregular 
angular distribution, I,,, with its origin linked to 
medium emission, is expected to be near isotropic. 
Thus, equation (3) describing I,,, can be simplified by 
applying the P, approximation. For a linear aniso- 
tropic phase function 

&i,s^‘) = 1+n,i-S’ (6) 

the incident radiation G, is given by the following 
equation : 

V+G,-3(‘-“)BG- 
I 

= - 12n(l-~)/11~-347[1+ +4, (7) 

where 

and 

0, = u,o/3. (8) 

For a diffusely reflecting surface, G,, admits Mar- 
shak’s boundary conditions for a cold surface 

where 

Finally, in solving the energy equation, knowledge of 
the specific gas cooling rate due to thermal radiation 
is required and is given as 

v.qz4n(I-w)/?(I,-~). (II) 

As pointed out by Modest, the MDA reduces to the 
correct limit for the optically thin as well as the 
optically thick media. In the thin limit, the medium 
emission-related contribution to heat transfer vanishes. 
In the thick limit, the MDA solution converges to the 
P, approximation. 

3. NUMERICAL SOLUTION 

Our numerical technique is geared to obtain the 
V*q distribution within the medium and the wall heat 
flux distribution. The overall solution is obtained in 
three steps. In the first step, equation (5) is solved 
numerically for the wall radiosity distribution. The 
second step consists of integrating equation (4) for 
incident radiation G, and wall heat flux qS. These two 
variables constitute inputs to equation (7), which is 
solved for G, and q, by a finite difference technique. 
For numerical purposes, the rectangular furnace is 
subdivided into a uniform Ix J x K grid. 

3. I. Radiosity distribufion 
Equation (5) is equivalent to an enclosure problem 

for a participating medium. It is a Fredholm integral 
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equation which may be approximated by the fol- 
lowing set of algebraic equations : 

.\ 
J\\I = ~u,7-&\l+(l -L,) c J,,“,F b,, (12) 

n- 0 

whcrc I is a wall segment, N = 2(f x J+ J x K+ K x I), 
and F,,,, reprcscnts the view factor between wall seg- 
ments I and 111 separated by the participating medium 

h,,, = ;- 
ss 

cos 0 cos 0’ 
I II .!,,, rc[(r - r’l’ 

x exp(-/I/r-r’l)dA,dA,,,. (13) 

For small p or when segments I and nr are in close 
proximity, fine subdivisions arc required to estimate 
F,,,, accurately. The computational effort can be 
greatly relieved by likening F,,,, to the surface exchange 
area S,S, used in the zone method. Tucker [5] has 
derived exponential correlations for direct exchange 
areas between square surfaces. For perpendicularly 
oriented surfaces of grid size B separated by distances 
X, Y and Z on remote corners, Table I presents the 
coefficients for use in the following exponential cor- 
relation : 

F,,. = C exp ( -AT,,), T,, = /lB. 

A = A,+A,T,+A~T~+A,T~+A,T~. (14) 

Outside the range of the correlation, i.e. X/B, Y/B 
or Z/B > 3, single-point quadrature is employed for 
calculating F,,, from equation (I 3). Tucker also pre- 
sents exponential correlations for parallel square sur- 
faces. These are not useful in the present work since 
the normalized separation X/B. Y/B or Z/B for par- 
allel surfaces is invariably larger than 4 so that singlc- 
point quadrature is sufficiently accurate. 

Equation (12) represents a set of 2(1x J-t 
J x K+ K x I) linear algebraic equations that is easily 
inverted by the method of successive substitutions. 
Generally, three to five iterations arc sufficient 

to obtain a convergent solution with a relative 
error in J,, smaller than IO- I”. View factors F,, are 
calculated once and stored as read only memory 
(ROM). 

3.2. I~~cirlmt miiaticm G, 
A formal solution of the G, field can be constructed 

by integrating I,. given by equation (4). over the solid 
angle 

(15) 

An obvious way of performing solid angle integration 
is to subdivide the enclosure wall into small area 
elements dA, and conduct the following summation : 

cos 06A 
G,(r) =~Jn”~xp(-Plr-r,,/)~~+, (16) 

The foregoing summation represents a one-point 
quadrature. It has proved unsatisfactory for two 
reasons. First, the quadrature method is very inac- 
curate for field points in close proximity to the wall 
elements. A proper error control was found to require 
an excessively large number of surface grid points. 
Second, equation (16) yields G, at a specific field point, 
whereas a volume-averaged quantity is required in 
solving equation (7) for G,. The latter can be obtained 
by performing the following five-fold integration with 
a sufficient number of quadrature points : 

cos 0 
x -----dA,,dV. (17) 

lr-ruI’ 

The computational effort expended in evaluating the 
multi-dimensional integral can be greatly reduced by 

Table l.Tucker's correlation coefficients for exchange areas between perpendicularly oriented surfaces;see equation (14) 

XiB Y/B Z/B 
- 

I I I 
2 I I 
3 I I 
I 2 I 
2 2 I 
3 2 I 
I 3 I 
2 3 I 
3 3 I 
I 2 2 
2 2 2 
3 2 2 
I 3 2 
2 3 2 
3 3 2 
I 3 3 
2 3 3 
3 3 3 

C 
~- 

0.2000 
0.0406 
0.0043 
0.0328 
0.0189 
0.0059 
0.0089 
0.0069 
0.0036 
0.0329 
0.0230 
0.0101 
0.0159 
0.0129 
0.0076 
0.0124 
0.0107 
0.0073 

0.5390 -0.0615 0.00429 -0.000151 0.206E-5 
0.9965 -0.0878 0.00419 -0.773E-4 0 
1.906 
I.571 -0.0391 0.00208 
I.751 
2.384 
2.502 
2.665 
3.129 
2.055 
2.245 
2.780 
2.860 
3.010 
3.435 
3.481 
3.609 
3.976 
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expressing the integral in terms of the gas-surface walls unattenuated to the total radiation leaving the 
exchange area gs used in the zone method enclosure walls 

(18) 

z= Pev(-Blr-rwI) 
cos 0 

----,dA,dV (19) 
lcjr-rJ- 

where Tucker [5] has presented the following expon- 
ential correlations for estimating the surface-volume 
exchange areas between cubic gas zones and square 
surface zones : 

gs/(.ysh = C exp (-AT,), TV = BB 

A = A,+A,T,+A~T~ 

(&, = 4/3B’exp (-0.43288~,+0.042148ri 

-0.0023416~~+0.000050513~~). (20) 

Table 2 presents the correlation coefficients for nor- 
malized separation distances X/S, Y/B and Z/B c 3. 
A single-point quadrature is used for evaluating @ 
from equation (19) when the normalized separation 
distance is larger than 3. 

Consistency and accuracy of the numerical solu- 
tions for J, and G, can be verified by integrating the 
I, transport equation (2) over the solid angle and 
applying the divergence theorem 

b 5 se- s 
V q,dV+ bG,dV= qs ndA+ fiG,dV=O 

where 

(21) 

qs*fi dA = --CJw,A,+ ~~Jw,&,A,. (22) 

We can define a factor f‘ as the ratio of radiation 
attenuated in the medium and reaching the enclosure 

Jw,f-,A+ BG dV 

f=CC 
1‘ 

~-LA . 
(23) 

If the numerical solution were exact, f would be unity. 
Deviation of .I’ from unity is a measure of inaccuracy 
in G, computation and the enclosure problem. In one 
of the numerical experiments, use of Tucker’s expon- 
ential correlation for exchange areas yielded a value 
of I .00172 for .f when a uniform 5 x 5 x IO grid was 
applied to a 2 x 2 x 4 m furnace with b equal to 0.5. 

3.3. G, field 
Equation (7) for G, subject to the boundary con- 

dition given by equation (IO) can be easily discretized 
by finite differencing. We adopt a conservative scheme 
in which discretization is performed by integrating the 
governing equation over the control volume. A cell- 
centered finite difference approximation is used for 
the derivative term and a cell-averaged approximation 
for the remaining terms. Auxiliary grids are defined 
for application of the boundary conditions and evalu- 
ation of derivatives at the boundaries. On collecting 
the coefficients of the discretized equations, the fol- 
lowing set of algebraic equations is obtained : 

Table 2. Tucker’s correlation coefficients for exchange area between cubic gas zones and 
square surface zones; see equation (20) 

2 
3 
2 
3 
3 
I 

2 
3 
2 
3 
3 

I 
I 
2 
2 
3 
I 
I 
I 

2 
2 
3 
I 
I 
I 
2 
2 
3 

I 0.0337 0.4563 -0.0311 0.824E- 3 
I 0.0048 1.457 
I 0.0137 0.8332 - 0.0469 -0.00103 
I 0.0034 1.674 
I 0.0017 2.251 
2 0.0313 1.062 
2 0.0200 I .292 
2 0.0078 I.933 
2 0.0135 1.514 
2 0.0062 2.089 
2 0.0037 2.602 
3 0.0120 2.033 
3 0.0098 2.210 
3 0.0060 2.666 
3 0.0083 2.366 
3 0.0053 2.806 
3 0.0037 3.201 
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A” = &AJ~,/(~I,,I+ I.&,.+ 1,:) 

AL = AOY,/(BI,,L I,&- ,c) 
A’= AE+AW+AN+As+AH 

+AL+3(l -w,,~)&&,A~~,k~ 

$,A = INI -~,,~)/~,,~I,,,,LA.Y,A~,A=I 

(24) 

Three dilferent methods have been attempted for solv- 
ing the foregoing set of algebraic equations: a suc- 
cessive over-relaxation method (SOR), an iterative 
line-by-line elimination procedure based on the tri- 
diagonal matrix inversion algorithm (TDMI), and 
sparse matrix inversion package developed at Yale 
University (YSMP). With the introduction of an opti- 
mal over-relaxation parameter, determined by exper- 
iments, TDMI has been found to be two to three times 
faster than the optimal SOR. Both TDMI and SOR 
are found to suffer slow convergence at small extinc- 
tion coefficient p. For coarse grids with less than 1000 
nodes, YSMP is IO-100 times faster than TDMI. For 
fine grids and enclosures with non-unit aspect ratios, 
the memory requirement of YSMP becomes excess- 
ively large and the computational speed advantage 
over TDMI also begins to disappear. Finally, since 
the finite difference scheme is conservative, the Gauss 
theorem can be employed to establish a convergence 
criterion for the iteration procedure 

4. COMPUTATIONAL BEHAVIOR 

As mentioned earlier, the view factor array F,“, is 
not assigned to random access memory (RAM). For 
a 20 x 20 x 20 grid, the array is 5.96 Mb words long 
and is more conveniently stored as read only memory 
(ROM). One consequence of using ROM storage is 
increased I/O time. For maximum economy in I/O 
time, unformatted storage is used for F,m and all search 
procedures are avoided by reading F,“, in the order it 
is written. The array size can be halved by using the 
reciprocity relation F ,,,, = A,,F,,,/A,. For constant /I 
and for certain restrictive variations in p, the array 
size can be further reduced from similarity arguments. 

Timing tests have been conducted to quantify the 
computational effort expended in the three major seg- 
ments of MDA: the enclosure problem, G, field and 
G, field. For the purpose of these tests, wall and 
gas temperatures are assumed to be given. Table 3 
provides a breakdown of CPU times on a SUN 
SPARC SLC workstation for 4 x 4 x 14, 8 x 8 x 28, 
12 x I2 x 42 and I6 x I6 x 56 grids. The majority of 

Table 3. Breakdown of CPU time (s) on SUN SPARC SLC 

MDA Improved MDA 

Grid Jt! G, Gm G, Gn 

4X4X14 47 28.4 0.3 5.5 0.4 
8X8X28 1142 1473.6 2.6 23.1 2.6 

12x12~42 5045 10093 5.9 63.5 8.8 
16x16~56 26450 75483 20 132.7 20.7 

CPU time is seen to be incurred in subroutines dedi- 
cated to determining J, and G, fields. For a cubic 
enclosure, the CPU time for the G, field scales up 
with the number of grid points as I’, as I4 for the J, 
field and as I’ for the G, field. The scaling order 
implies that from a computational standpoint. MDA 
becomes increasingly inefficient as the grid system is 
refined. 

From the foregoing discussion there is a clear incen- 
tive to seek an alternative formulation for the G, field 
that avoids I“ and 1’ scaling of CPU time. We have 
applied the discrete ordinate (S,) technique to eqaa- 
tion (2) for G,. The S, solution for G, is particularly 
expedient since equation (2) contains no terms for 
medium emission and in-scattering. The CPU time for 
improved MDA, i.e. S,+P,, is compared to regular 
MDA (Modest’s formulation) in Table 3. An impress- 
ive reduction in CPU time-ranging from a factor 01 
14 for a 4 x 4 x I4 grid to 768 for a I6 x I6 x 56 grid- 
is obtained. More details of the computational aspects 
of the improved MDA formulation will be presented 
as a technical note in a future publication. 

In a problem with specified wall temperature and 
temperature-independent radiation properties, the 
radiosity distribution and the G, field (or alternatively 
the S, solution for G,) need to be determined only 
once. The G, field must be determined iteratively in 
conjunction with the solution of the energy equation 
for the temperature field. For 6-10 temperature 
iterations, the total CPU time in the improved MDA 
formulation for G, becomes comparable to that for 
the G, (P,) solution. Thus, with a modest increase in 
computational effort, the improved MDA for- 
mulation expands the validity of the P, approxi- 
mation, which is normally applicable only in the 
optically-thick limit, to the entire range of the optical 
spectrum. 

5. COMPARISON WITH OTHER METHODS 

For the purpose of validating MDA, we select a 
simple problem that has been analyzed by many inves- 
tigators using different methods. The enclosure to be 
analyzed is a rectangular box of dimensions 2 m (X), 
2 m (Y) and 4 m (Z). The temperature boundary 
conditions are : 1200 K at a = 0,400 K at 2 = 4 m and 
900 K for all other walls. Surface emissivity is specified 
as 0.85 for wall z = 0 and 0.70 for all other walls. The 
medium is gray with a constant 5 kW m-j volumetric 
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heat source (V.q). With divergence of heat flux speci- 
fied, it is not necessary to solve for the temperature 
field explicitly since the Planck function I, can be 
eliminated from the G, equation by combining equa- 
tions (7) and (I I) 

I 
Vy7G”, =3v*q-- 

3p 
(l-w,) GX. (26) 

The solution for the P, approximation can bc obtained 
from equation (26) by setting G, equal to zero and 
modifying the boundary conditions given by equation 
(9) as 

- I’ /i*VG, +G,, = 4nl,,.. 
PI 

Figure I compares the temperature distribution in 
the rectangular enclosure at two different heights for 
various values of the extinction cocfficicnt /j. For pur- 
poses of comparison, results from the zone method, 
P,,, approximations and S,,,, approximations are also 
presented in this figure. One difficulty in directly com- 
paring different models stems from the dissimilarity 
in grids requiring linear interpolation of calculated 
temperatures and heat fluxes between the grid nodes. 
Our MDA and P, calculations are based on a 5 x 5 x IO 
uniform grid used in the zonal method. Mengiic and 

Ilcm / , , , , / , 

Y I ,  

8WI”~I’I~I I.I.I.I.+--+1 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 I.8 2.0 

I IW . , . , , , . ,  , , I , , , , ,  

L = 3.6 m 

8co.l.l.l.’ I.I.I.l.1 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 I.4 1.6 I.8 2.0 

lloil ,I ,(,,. I /, 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 I.8 2.0 
x, m 

FIG. I. Comparison of gas temperature fields calculated 
from MDA, zone, P,, P,. and S, methods: purely absorbing 

medium. 

Viskanta [6] have employed a 7 x 7 x 1 I grid in their 
work on the P, approximation. Truelove [7] per- 
formed his S., calculations on an 8 x 8 x I5 grid. 
Assuming that the zone method provides the most 
exact solution, Fig. I shows that MDA is accurate 
near the cold wall (Z = 3.6 m) and reasonably accurate 
in the vicinity of the hot wall (1 = 0.4 m). Near the 
hot wall, MDA has accuracy comparable to the P, 
approximation and better than the P, approximation. 
The accuracy of MDA is somewhat independent of 
the optical thickness whereas that of the P, and P, 
solutions deteriorates as the optical thickness 
decreases. 

Figure 2 exhibits the heat flux profiles at the top 
(cold) and bottom (hot) walls. The general trend is 
that the P, and P, solutions significantly overestimate 
the heat flux. (The exception is the P, solution at: = 0 
for /I = 1.0 mm ‘, but this seems to be a coincidence.) 
As expected. the accuracy of P, solutions improves as 
the optical thickness increases, but the prediction of 
heat flux for an optically thin medium (p = 0.25 and 
0.5 m- ‘) is unacceptably poor. On thecontrary, MDA 
yields an almost exact heat flux at the cold wall (: = 4 
m) and an accurate prediction at the hot wall. 
especially at the boundaries, s = 0.2 m. Here again, 
the accuracy of MDA is insensitive to the magnitude 
of the extinction coefficient. 

‘O K 

IO J 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 I4 1.6 1.8 2.0 

70 

,$ 40 
LL 
z 30 

g20 

lO~“““““““““.l 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

70 ,I ~I~,~I~,.,I . 

0.0 0.2 0.4 0.6 0.8 1.0 I.2 1.4 1.6 1.8 2.0 
x. m 

FIG. 2. Comparison of heat flux calculated from MDA, zone. 
P,, P, and S, methods : purely absorbing medium. 
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0.0 0.2 0.4 0.6 0.X I .o I.? 14 1.6 I.8 20 

“Of.,.,‘I.I I’,‘,‘,‘,‘, 

20 

‘“0.0 0.2 0.4 0.6 0.8 1.0 I.2 I.4 I.6 I .8 2.0 
x, m 

FIG. 3. Comparison of temperature held and heat flux cal- FIG. 4. Comparison of temperature field and heat flux 
culated from MDA, zone, P, and S, methods: isotropically calculated from MDA, P,. S, and S, methods: aniso- 

scattering medium. tropically scattering medium. 

Figure 3 shows the effect of isotropic scattering 
(w = 0.7) on the temperature and heat flux profiles. 
The general trends are similar to the case without 
scattering. The modified differential approximation 
yields better results than the P, solution near the walls, 
but the temperature distribution determined from 
MDA has about 1% error in the center of the enclos- 
ure. As explained by Truelove [7], the effect of iso- 
tropic scattering is to increase the emissive power crT’ 
by wV~q/4p(l -m), while the heat flux distribution 
is unchanged for the specified radiative flux in the 
medium. The present numerical results from the modi- 
fied differential approximation and the P, approxi- 
mation give results consistent with this explanation, 
i.e. the heat flux distribution almost remains 
unchanged whereas the temperature increases uni- 
formly throughout the enclosure. However, for more 
general boundary conditions where the temperature 
field in the medium is specified or the temperature 
distribution is obtained simultaneously with the radi- 
ation intensity, the effect of scattering on the heat flux 
is usually significant. 

Figure 4 shows the effect of anisotropic scattering 
on the temperature and heat flux profiles. The forward 
scattering (a, = 0.99) increases the absolute value of 
the heat flux by about 10% when the extinction 
coefficient is 0.5 and the albedo is 0.7. For the same 
values of these parameters, the temperature profiles 
are almost the same as the isotropic scattering case 
(a, = 0). The heat flux increases with a, since the 
forward scatter enhances the heat transfer from hot 
to cold walls. As the albedo increases, the effect of the 

Q Q Q P Q Q Q 

L = 0.4 m 

0.0 0.2 0.4 0.6 0.8 1.0 I.2 I.4 1.6 I.8 2.0 

80 , 
A a 

, , , , , 

,I A c. n Lb A A 
’ 3 

70 

0.0 0.2 0.4 0.6 0.8 I .o I.2 1.4 
x. m 

1.6 18 2.0 

forward scattering is expected to grow because of the 
dominance of scattering in radiation transport. 

6. DISCUSSION AND CONCLUSION 

The MDA has the appealing attribute of being 
physically correct in the optically thin and thick limits. 
Various merits, limitations and characteristics of 
MDA are evaluated below with the help of some 
illustrative examples. 

(a) In the optically thin limit, the G, field serves as 
the correct solution to the radiation transport 
equation. In this limit, the accuracy of the MDA solu- 
tion is determined by the numerical accuracy to which 
equation (2) is solved. To elucidate this point, P,, 
MDA, S, and S, methods have been applied to the 
problem posed in Section 5 with /j = 0. I m- ‘, w = 0.7 
and a, = 0.7. An identical 9 x 9 x IS grid has been 
used in each method. Figure 5 compares the heat flux 

x, m 
FIG. 5. Behavior of improved MDA method in optically thin 

limit. 
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profiles calculated by various methods. As expected, 
the P, approximation performs poorly in this limit. 
MDA has the accuracy of S, since the S, technique 
has been used for solving the G, equation that does 
not contain the in-scattering or the medium emission 
terms. MDA would have the accuracy of S, in this 
limit if the S, technique was used for solving the G, 
equation. 

(b) In the optically thick limit, the G, field provides 
the correct solution to the radiation transport 
equation. As shown in Fig. 6, P,, MDA and discrete 
ordinate methods have comparable accuracies in this 
limit. 

(c) From the discussions in Sections 5, 6a and 6b, 
we conclude that MDA is superior to higher-order 
moment methods (PN) and as accurate as discrete- 
ordinate methods (S,W). 

(d) As discussed in Section 3 and 4, direct evalu- 
ation of multiple integrals encountered in the solution 
of equation (2) presents a formidable task. The evalu- 
ation process is considerably simplified by use of 
Tucker’s exponential correlation for surface-surface 
and volume-surface exchange coefficients. In spite of 
this simplification, G, solution is computationally 
intensive and increasingly inefficient as the grid system 
is refined (see Table 3). One way of circumventing 
this computational difficulty is to seek an alternative 
formulation, such as the discrete-ordinate method, 
for solving the G, equation. The resultant saving in 
computer time is well documented in Table 3. 

(e) For the problem and grid system outlined in 
Section 6a, Table 4 compares the CPU times taken by 
different methods: P,, MDA using Tucker’s cor- 
relations for G,, improved MDA based on S, for G,, 
S4 and S,. In each method, the same convergence 
criterion, namely relative change in G, and G,, and 
I smaller than IO-“% between iterations, is used. 
Improved MDA (P, + S,) is seen to be considerably 
faster than the equivalent discrete-ordinate method, 
S.,, especially at large /I. On an IBM RISC 6000 work- 
station, S, solution takes 178.3 s for ,0 = 2 mm-‘, 
whereas improved MDA requires 7.7 s, of which 1.1 s 
is spent on the P, method for G, and 6.6 s on S, for 
G,. The economy of computer time is particularly 
impressive when the gas temperature field is unknown. 
For example, if 10 iterations are needed to solve the 
energy equation for the gas temperature field, the 
CPU time required by S, would be 1783 s. In MDA, 

‘“00 0.2 “..I 0.6 0” 1.0 12 1.4 I.6 I.8 20 
x, m 

FIG. 6. Behavior of improved MDA method in optically 
thick limit. 

G, would need to be solved only once, requiring 6.6 s 
of CPU time, and all the iterations on the G, field 
would be carried out using P,. Thus the total CPU 
time incurred would be 6.6+ 10 x I .I = 17.6 s- 
merely one-hundredth of the resources required by 
S,. S, for G, generally requires only a fraction of the 
CPU time needed by S, for a complete radiation field. 
For example, it takes 6.6 s to determine the G, field 
by S, when p = 2 m- ’ as compared to 178.3 s for 
complete radiation field by S,. The economy of com- 
puter time is realized in part from fewer iterations 
(eight vs 81) required by S,- G, to converge. Faster 
convergence results from the absence of medium emis- 
sion and scattering terms in equation (2). The con- 
siderable saving in computer time also derives from 
not having to perform the in-scattering summation at 
each interior grid point. 

(f) Generally, the discrete-ordinate method 
numerics have a characteristic of increasing CPU time 
with p. The improved MDA displays the opposite 
trend. The numerical difficulty at small /3 arises from 
the slow convergence of TDMI applied to G, equa- 
tions. A sparse matrix equation solver, such as YSMP, 
has been found to be IO-100 times faster than the 
TDMI algorithm. Moreover, the CPU time of the 
direct equation solver is independent of ly. However, 
the computer memory requirement of YSMP 
increases non-linearly with the number of grids, mak- 
ing it almost impractical for grids larger than 
10 x 10 x IO. Further work is required to improve the 
convergence behavior of the G, finite difference equa- 
tions for the optically thin limit. 

Table 4. Comparison of CPU times (s) on IBM RS/6000-550 workstation : 9.x 9 x 15 grid. double precision arithmetic, 
relative convergence of 10m4% 

[ W ‘) 

2 
MDA 
Improved 
MDA (S,+P,) 
PI 

w = 0.1 w = 0.5 w = 0.9 

35.3 0.1 59.5 0.5 178.3 2.0 0.1 0.5 2.0 0.1 0.5 2.0 

746.9 775.3 1113.1 746.9 775.2 1113.2 
132.3 110.0 90.8 

16.9 9.6 7.7 16.4 7.6 

II.8 2.9 1.1 2.9 2.7 
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